µm atau pada Bilangan Gelombang 13.000 – 10 cm-1. Radiasi elektromagnetik dikemukakan pertama kali oleh James Clark Maxwell, yang menyatakan bahwa cahaya secara fisis merupakan gelombang elektromagnetik, artinya mempunyai vektor listrik dan vektor magnetik yang keduanya saling tegak lurus dengan arah rambatan.
Gambaran berkas radiasi elektromagnetik diperlihatkan pada Gambar berikut :
Saat ini telah dikenal berbagai macam gelombang elektromagnetik dengan rentang panjang gelombang tertentu. Spektrum elektromagnetik merupakan kumpulan spektrum dari berbagai panjang gelombang. Berdasarkan pembagian daerah panjang gelombang pada Tabel 1 dan Gambar 2, sinar infra merah dibagi atas tiga daerah, yaitu:
a. Daerah Infra Merah dekat.
b. Daerah Infra Merah pertengahan.
c. Daerah infra merah jauh..
Dari pembagian daerah spektrum elektromagnetik tersebut diatas, daerah panjang gelombang yang digunakan pada alat spektrofotometer infra merah adalah pada daerah infra merah pertengahan, yaitu pada panjang gelombang 2,5 – 50 µm atau pada bilangan gelombang 4.000 – 200 cm-1. Satuan yang sering digunakan dalam spektrofotometri infra merah adalah Bilangan Gelombang () atau disebut juga sebagai Kaiser.
Interaksi Sinar Infra Merah Dengan Molekul
Dasar Spektroskopi Infra Merah dikemukakan oleh Hooke dan didasarkan atas senyawa yang terdiri atas dua atom atau diatom yang digambarkan dengan dua buah bola yang saling terikat oleh pegas seperti tampak pada gambar disamping ini. Jika pegas direntangkan atau ditekan pada jarak keseimbangan tersebut maka energi potensial dari sistim tersebut akan naik.
Setiap senyawa pada keadaan tertentu telah mempunyai tiga macam gerak, yaitu :
- Gerak Translasi, yaitu perpindahan dari satu titik ke titik lain.
- Gerak Rotasi, yaitu berputar pada porosnya, dan
- Gerak Vibrasi, yaitu bergetar pada tempatnya.
Panjang gelombang atau bilangan gelombang dan kecepatan cahaya dihubungkan dengan frekwensi melalui bersamaan berikut :
Energi yang timbul juga berbanding lurus dengan frekwesi dan digambarkan dengan persamaan Max Plank :
sehingga :
dimana :
E = Energi, Joule
h = Tetapan Plank ; 6,6262 x 10-34 J.s
c = Kecepatan cahaya ; 3,0 x 1010 cm/detik
n = indeks bias (dalam keadaan vakum harga n = 1)
l = panjang gelombang ; cm
u = frekwensi ; Hertz
Dalam spektroskopi infra merah panjang gelombang dan bilangan gelombang adalah nilai yang digunakan untuk menunjukkan posisi dalam spektrum serapan. Panjang gelombang biasanya diukur dalam mikron atau mikro meter ( µm ). Sedangkan bilangan gelombang ( ) adalah frekwensi dibagi dengan kecepatan cahaya, yaitu kebalikan dari panjang gelombang dalam satuan cm-1. Persamaan dari hubungan kedua hal tersebut diatas adalah :
Posisi pita serapan dapat diprediksi berdasarkan teori mekanikal tentang osilator harmoni, yaitu diturunkan dari hukum Hooke tentang pegas sederhana yang bergetar, yaitu :
dimana :
Keterangan :
c = kecepatan cahaya : 3,0 x 1010 cm/detik
k = tetapan gaya atau kuat ikat, dyne/cm
µ = massa tereduksi
m = massa atom, gram
Setiap molekul memiliki harga energi yang tertentu. Bila suatu senyawa menyerap energi dari sinar infra merah, maka tingkatan energi di dalam molekul itu akan tereksitasi ke tingkatan energi yang lebih tinggi. Sesuai dengan tingkatan energi yang diserap, maka yang akan terjadi pada molekul itu adalah perubahan energi vibrasi yang diikuti dengan perubahan energi rotasi.
Perubahan Energi Vibrasi
Atom-atom di dalam molekul tidak dalam keadaan diam, tetapi biasanya terjadi peristiwa vibrasi. Hal ini bergantung pada atom-atom dan kekuatan ikatan yang menghubungkannya. Vibrasi molekul sangat khas untuk suatu molekul tertentu dan biasanya disebut vibrasi finger print. Vibrasi molekul dapat digolongkan atas dua golongan besar, yaitu :
- Vibrasi Regangan (Streching)
- Vibrasi Bengkokan (Bending)
Dalam vibrasi ini atom bergerak terus sepanjang ikatan yang menghubungkannya sehingga akan terjadi perubahan jarak antara keduanya, walaupun sudut ikatan tidak berubah. Vibrasi regangan ada dua macam, yaitu:
- Regangan Simetri, unit struktur bergerak bersamaan dan searah dalam satu bidang datar.
- Regangan Asimetri, unit struktur bergerak bersamaan dan tidak searah tetapi masih dalam satu bidang datar.
Vibrasi Bengkokan (Bending)
Jika sistim tiga atom merupakan bagian dari sebuah molekul yang lebih besar, maka dapat menimbulkan vibrasi bengkokan atau vibrasi deformasi yang mempengaruhi osilasi atom atau molekul secara keseluruhan. Vibrasi bengkokan ini terbagi menjadi empat jenis, yaitu :
- Vibrasi Goyangan (Rocking), unit struktur bergerak mengayun asimetri tetapi masih dalam bidang datar.
- Vibrasi Guntingan (Scissoring), unit struktur bergerak mengayun simetri dan masih dalam bidang datar.
- Vibrasi Kibasan (Wagging), unit struktur bergerak mengibas keluar dari bidang datar.
- Vibrasi Pelintiran (Twisting), unit struktur berputar mengelilingi ikatan yang menghubungkan dengan molekul induk dan berada di dalam bidang datar.
Daerah Spektrum Infra Merah
Para ahli kimia telah memetakan ribuan spektrum infra merah dan menentukan panjang gelombang absorbsi masing-masing gugus fungsi. Vibrasi suatu gugus fungsi spesifik pada bilangan gelombang tertentu. Dari Tabel 2 diketahui bahwa vibrasi bengkokan C–H dari metilena dalam cincin siklo pentana berada pada daerah bilangan gelombang 1455 cm-1. Artinya jika suatu senyawa spektrum senyawa X menunjukkan pita absorbsi pada bilangan gelombang tersebut tersebut maka dapat disimpulkan bahwa senyawa X tersebut mengandung gugus siklo pentana.
Daerah Identifikasi
Vibrasi yang digunakan untuk identifikasi adalah vibrasi bengkokan, khususnya goyangan (rocking), yaitu yang berada di daerah bilangan gelombang 2000 – 400 cm-1. Karena di daerah antara 4000 – 2000 cm-1 merupakan daerah yang khusus yang berguna untuk identifkasi gugus fungsional. Daerah ini menunjukkan absorbsi yang disebabkan oleh vibrasi regangan. Sedangkan daerah antara 2000 – 400 cm-1 seringkali sangat rumit, karena vibrasi regangan maupun bengkokan mengakibatkan absorbsi pada daerah tersebut.
Dalam daerah 2000 – 400 cm-1 tiap senyawa organik mempunyai absorbsi yang unik, sehingga daerah tersebut sering juga disebut sebagai daerah sidik jari (fingerprint region). Meskipun pada daerah 4000 – 2000 cm-1 menunjukkan absorbsi yang sama, pada daerah 2000 – 400 cm-1 juga harus menunjukkan pola yang sama sehingga dapat disimpulkan bahwa dua senyawa adalah sama.
Cara Kerja Alat Spektrofotometer FTIR
Sistim optik Spektrofotometer FTIR seperti pada gambar dibawah ini dilengkapi dengan cermin yang bergerak tegak lurus dan cermin yang diam. Dengan demikian radiasi infra merah akan menimbulkan perbedaan jarak yang ditempuh menuju cermin yang bergerak ( M ) dan jarak cermin yang diam ( F ). Perbedaan jarak tempuh radiasi tersebut adalah 2 yang selanjutnya disebut sebagai retardasi ( δ ). Hubungan antara intensitas radiasi IR yang diterima detektor terhadap retardasi disebut sebagai interferogram. Sedangkan sistim optik dari Spektrofotometer IR yang didasarkan atas bekerjanya interferometer disebut sebagai sistim optik Fourier Transform Infra Red.
Contoh cara identifikasi spektra IR
Gambar spektra IR 1-oktena
Pada sistim optik FTIR digunakan radiasi LASER (Light Amplification by Stimulated Emmission of Radiation) yang berfungsi sebagai radiasi yang diinterferensikan dengan radiasi infra merah agar sinyal radiasi infra merah yang diterima oleh detektor secara utuh dan lebih baik.
Detektor yang digunakan dalam Spektrofotometer FTIR adalah TGS (Tetra Glycerine Sulphate) atau MCT (Mercury Cadmium Telluride). Detektor MCT lebih banyak digunakan karena memiliki beberapa kelebihan dibandingkan detektor TGS, yaitu memberikan respon yang lebih baik pada frekwensi modulasi tinggi, lebih sensitif, lebih cepat, tidak dipengaruhi oleh temperatur, sangat selektif terhadap energi vibrasi yang diterima dari radiasi infra merah.
Keunggulan Spektrofotometer FTIR
Secara keseluruhan, analisis menggunakan Spektrofotometer FTIR memiliki dua kelebihan utama dibandingkan metoda konvensional lainnya, yaitu :
- Dapat digunakan pada semua frekwensi dari sumber cahaya secara simultan sehingga analisis dapat dilakukan lebih cepat daripada menggunakan cara sekuensial atau scanning.
- Sensitifitas dari metoda Spektrofotometri FTIR lebih besar daripada cara dispersi, sebab radiasi yang masuk ke sistim detektor lebih banyak karena tanpa harus melalui celah (slitless).
Artikel Terkait
Artikel ini ditulis oleh : Unknown ~ Blogger Pasuruan
Terimakasih sahabat telah membaca : Teori Spektrofotometri Infra Merah. Anda bisa menyebarluaskan artikel ini, Asalkan meletakkan link dibawah ini sebagai sumbernya
Tidak ada komentar:
Posting Komentar